Pytorch Tutorial Notes

  1. Input Pipeline

    1
    2
    # dataset => loader
    # torchvision.datasets => torch.utils.data.DataLoader
  2. Train && Val Diff

    1
    2
    3
    4
    5
    6
    7
    8
    #train = true of false
    train_dataset = torchvision.datasets.MNIST(root='../data/',
    train=True,
    transform=transforms.ToTensor(),
    download=True)
    val_dataset = torchvision.datasets.MNIST(root='../data/',
    train=False,
    transform=transforms.ToTensor())
  3. torch.max ‘s return : first is the max value,second is the index

  4. 计算准确率

    1
    correct += (predicted == labels).sum().item()
  5. Output size of Conv

  1. Summary.

     To summarize, the Conv Layer:
    
    • Accepts a volume of size

    • Requires four hyperparameters:

      • Number of filters K,
      • their spatial extent F,
      • the stride S,
      • the amount of zero padding P.
    • Produces a volume of sizeW2×H2×D2

      where:

      • D2=K

    • With parameter sharing, it introduces

      weights per filter, for a total of

      weights and K biases.

    • In the output volume, the d-th depth slice (of size W2×H2) is the result of performing a valid convolution of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.